martes, 27 de noviembre de 2007

CIRCUITOS RC

Los circuitos RC son circuitos que están compuestos por una resistencia y un condensador.

Se caracteriza por que la corriente puede variar con el tiempo. Cuando el tiempo es igual a cero, el condensador está descargado, en el momento que empieza a correr el tiempo, el condensador comienza a cargarse ya que hay una corriente en el circuito. Debido al espacio entre las placas del condensador, en el circuito no circula corriente, es por eso que se utiliza una resistencia.

Cuando el condensador se carga completamente, la corriente en el circuito es igual a cero.

La segunda regla de Kirchoff dice: V = (IR) - (q/C)

Donde q/C es la diferencia de potencial en el condensador.

En un tiempo igual a cero, la corriente será: I = V/R cuando el condensador no se ha cargado.

Cuando el condensador se ha cargado completamente, la

corriente es cero y la carga será igual a: Q = CV

La figura ilustra un ejemplo de un circuito resistor-capacitor, o circuito RC

3. Carga de un capacitor

Si cargamos al capacitor de la figura siguiente al poner el interruptor Sen la posición a. ¡ Que corriente se crea en el circuito cerrado resultante?, aplicando el principio de conservación de energía tenemos:



En el tiempo dt una carga dq (=i dt) pasa a través de cualquier sección transversal del circuito. El trabajo ( = Є dq) efectuado por la fem debe ser igual a la energнa interna ( i2 Rdt) producida en el resistor durante el tiempo dt, mas el incremento dU en la cantidad de energía U (=q2/2C) que esta almacenada en el capacitor. La conservación de la energía da:
Є dq = i2 Rdt + q2/2C
Є dq = i2 Rdt + q/c dq
Al dividir entre dt se tiene:
Є dq / dt = i2 Rdt + q/c dq/dt
Puesto que q es la carga en la placa superior, la i positiva significa dq/dt positiva. Con i = dq/dt, esta ecuación se convierte en
:
Є = i Rdt + q/c
La ecuación se deduce tambien del teorema del circuito cerrado, comodebe ser puesto que el teorema del circuito cerrado se obtuvo a partir del principio de conservación de energía . Comenzando desde el punto xy rodeando al circuito en el sentido de las manecillas del reloj, experimenta un aumento en potencial, al pasar por la fuentge fem y una disminución al pasar por el resistor y el capacitor , o sea :
Є -i R - q/c = 0
La cual es idéntica a la ecuación Є = i Rdt + q/c sustituimos prime
ro por i por dq/dt, lo cual da:
Є = R dq / dt + q/c
Podemos reescribir esta ecuación así:
dq / q - Є C = - dt / RC
Si se integra este resultado para el caso en que q = 0 en t= 0, obtenemos: (despejando q),
q= C Є ( 1 – e-t/RC)
Se puede comprobar que esta función q (t) es realmente una solución de la ecuación
Є = R dq / dt + q/c , sustituyendol en dicha ecuaciуn y viendo si reobtiene una identidad. Al derivar la ecuación q= C Є ( 1 – e-t/RC) con respecto al tiempo da:
i = dq = Є e-t/RC
dt R
En las ecuaciones q= C Є ( 1 – e-t/RC) y i = dq = Є e-t/RC la cantidad RC tiene
dt R
las dimensiones de tiempo porque el exponente debe ser ad
imensional y se llama constantecapacitiva de tiempo τ C del circuito
τ C = RC
Es el tiempio en que ha aumentado la carga en el capacitor en un factor 1- e-1
(~63%) de su valor final C Є , Para demostrar esto ponemos t = τ C = RC en la ecuación q= C Є ( 1 – e-t/RC) para obtener:
q= C Є ( 1 – e-1) = 0.63 C Є

Grafica para el circuito


Corriente i y carga del capacitor q. La corriente inicial es Io y la carga inicial en el capacitor es cero. La corriente se aproxima asintóticamente a cero y la carga del capacitor tiende asintóticamente a su valor final Qf.
Grafica para los valores Є= 10v, R= 2000 Ώ y C= 1 μ F


Esta figura en la parte a muestra que si un circuito se incluye una resistencia junto con un capacitor que esta siendo cargado, el aumento de carga en el capacitor hacia su valor límite se retrasa durante su tiempo caracterizado por la constante de tiempo RC. Si un resistor presente (RC=0), la carga llegaría inmediatamente hacia su valor limite.
Tambien en la parte a como se indica por la diferencia de potencial Vc, la carga aumente con el tiempo durante el proceso de carga y Vc
tienede la valor de la fem Є.
El tiempo se mide en el momento en que el interruptores conecta en a para t= 0.
En la parte b de la figura La diferencia de potencial en el resistor disminuye con el tiempo, tendiendo a 0 en tiempos posteriores poruqe la corriente cae a cero una vez que el capacitor esta totalmente cargado. Las curvas
esta dibujadas para el caso Є=
10v, R= 2000 Ώ y C= 1 μ F. Los triangulos negros representan las constantes de tiempos sucesivas.


DESCARGA DE UN CONDENSADOR

Debido a que la diferencia de potencial en el condensador es IR = q/C, la razón de cambio de carga en el condensador determinará la corriente en el circuito, por lo tanto, la ecuación que resulte de la relación entre el cambio de la cantidad de carga dependiendo del cambio en el tiempo y la corriente en el circuito, estará dada remplazando I = dq/dt en la ecuación de diferencia de potencial en el condensador:

q = Q e-t/RC

Donde Q es la carga máxima

La corriente en función del tiempo entonces, resultará al derivar esta ecuación respecto al tiempo:

I = Q/(RC) e-t/RC

Se puede concluir entonces, que la corriente y la carga decaen de forma exponencial.

Conclusiones

Los capacitores tienen muchas aplicaciones que utilizan su capacidad de almacenar carga y energía
El acto de cargar o descargar un capacitor, se puede encontrar una situación en que las corrientes, voltajes y potencias si cambian con el tiempo.
Cuando τ es pequeρa, el capacitor se carga rαpidamente; cuando es mas grande, la carga lleva mas tiempo.
Si la resistencia es pequeña,es mas facil que fluya corriente y el capacitor se carga en menor tiempo.
Cuando se carga un capacitor ,la corriente se aproxima asintóticamente a cero y la carga del capacitor tiende asintóticamente a su valor final Qf y el aumento de carga en el capacitor hacia su valor límite se retrasa durante su tiempo caracterizado por la constante de tiempo RC. Si un resistor presente (RC=0), la carga llegaría inmediatamente hacia su valor limite.
Cuando se descarga un capacitor.la corriente Io y la carga inicial Qo: tanto i como q se acercan asintóticamente a cero.La carga en el capacitor varía con el tiempo de acuerdo con la ecuación q(t) = Qe-t/RC.
la caída de potencial a traves de la resistencia, IR, debe ser igual a la diferencia de potencial a través del capacitor, q / C entonce IR = q/c .
Cuando el interruptor está abierto, existe una diferencia de potencial Q / C a través del capacitor y una diferencia de potencial cero a traves de la resistencia ya que I = 0. Si el interruptor se cierra al tiempo t = 0, el capacitor comienza a descargarse a traves de la reisistencia.

No hay comentarios: